ВЛИЯНИЕ СОСТАВА МАТРИЦЫ И КОНЦЕНТРАЦИИ НА КИНЕТИКУ ЛЮМИНЕСЦЕНЦИИ ЕU³⁺ В ФОСФАТНЫХ СТЕКЛАХ

Полисадова Е.Ф.*, В.М. Лисицын*, Х.А. Отман**

 Национальный исследовательский Томский политехнический университет, <u>elp@tpu.ru</u>

** Faculty of Science, Menoufiya University, Shebin El-Kom, Egypt

ИСМАРТ-2012

Ион европия как активатор используется:

- в запоминающих средах
- В ЛАЗЕРНЫХ МАТЕРИАЛАХ (генерация на длине волны 0,61 мкм)
- в сцинтилляционных материалах
- В ЛЮМИНОФОРАХ (в том числе для плазменных дисплеев)

ИСМАРТ-2012

<u>Цель работы:</u>

выявить закономерности влияния на кинетику люминесценции трехвалентного европия Eu3+ матрицы стекла и концентрации ионов

<u>Объекты исследования :</u> Фосфатные стекла общего состава Р₂О₅-Li₂O- ZnO: Eu₂O₃

<u>Методы исследования :</u> Импульсная люминесцентная спектрометрия с временным разрешением

ИСМАРТ-2012

Технология изготовления:

Образцы были изготовлены в лаборатории Menufiya University (Египет) из особочистых компонентов производства Aldrich Chemicals.

≻ Нужное количество реагентов в стеклокерамическом тигле помещали в печь и выдерживали при температуре 350 °C в течение часа в воздушной среде. Затем смесь помещали в другую печь, и выдерживали при температуре 850 – 1050 °C с периодическим перемешиванием для достижения гомогенности. Каждая партия расплава отливалась в форму из малоуглеродистой стали для получения образца в виде диска толщиной 5 мм и диаметром 10 мм. После охлаждения в течение 30 сек, форма разъединялась и образцы осторожно извлекались и отжигались при

температуре 350°С 1 час. До комнатной температуры образцы охлаждались естественным образом в отключенной печи с начальной скоростью 3°С/мин.

ИСМАРТ-2012

Исследуемые образцы:

Состав образцов стекла с фиксированным содержанием Eu₂O₃ с изменением соотношения Li₂O и ZnO в шихте

Серия b			
50 мол% P2O5- (50-х) мол% Li2O- х мол% ZnO:5вес%Eu2O3			
Обозначение образца	Содержание Li ₂ O, мол%	Содержание ZnO, мол%	
1 b	50	0	
2 b	40	10	
3 b	30	20	
4 b	20	30	
5 b	10	40	
6 b	0	50	

Международная конференция «Инженерия сцинтилляционных материалов и радиационные технологии», г. Дубна

Исследуемые образцы:

Состав образцов стекла с фиксированным соотношением Li₂O и ZnO в шихте и переменным содержанием Eu₂O₃

Серия Е			
50 мол% P2O5- 30 мол% Li2O- 20 мол% ZnO: x вес% Eu2O3			
Обозначение образца	Содержание Еи ₂ О ₃ , вес%		
1 E	0,5		
2 E	1		
3 E	2		
$4\mathbf{E}$	2,5		
5 E	3		

Международная конференция «Инженерия сцинтилляционных материалов и радиационные технологии», г. Дубна, 19-23 ноября 2012 г.

Импульсный оптический спектрометр:

- 1 фотоумножитель;
- 2 монохроматор;
- 3,6 конденсоры;
- 4 криостат;
- 5 образец;
- 7 импульсная лампа ИНП-5-75;
- 8 блок питания и поджига лампы;
- 9 блок импульсного питания ФЭУ;
- 10 ФЭУ светового запуска;
- 11 оптический кабель;

12 — наносекундный ускоритель электронов на базе ГИН-600;

13 - блок питания и управления ГИНа;

14 - осциллограф;

15— генератор импульсов ГИ-1; 16схема сравнения и управления режимами работы установки;

17 - вольтметр ВК7-10А;

18 - источник питания твердотельного лазера И11ТЛ;

19 - импульсный лазер

ИСМАРТ-2012

Спектр импульсной катодолюминесценции

Международная конференция «Инженерия сцинтилляционных материалов и радиационные технологии», г. Дубна

Изменение концентрации европия

614нм для образца 5Е с 3% Еи

Зависимость времени затухания катодолюминесценции Eu³⁺-содержащих фосфатных стекол (серия **E**) от концентрации европия

Кинетика люминесценции в полосе

ИСМАРТ-2012

Изменение состава матрицы

Зависимость времени затухания катодолюминесценции в полосе 614 нм (серия **b**) от композиционного фактора Х т, мс

Кинетики затухания люминесценции Eu³⁺ в полосе 614 нм в образцах серии **b**

Зависимость интенсивности свечения Eu³⁺ (стационарная фотолюминесценция) от композиционного фактора (серия **b**)

Международная конференция «Инженерия сцинтилляционных материалов и радиационные технологии», г. Дубна

Изменение состава матрицы

Зависимость плотности упаковки кислорода и средней длины анионных цепей в фосфатном стекле от композиционного фактора Х

Плотность упаковки кислорода: **O** = (ρ / M) n где ρ – плотность ; M – молекулярный вес; n – число атомов кислорода в формульной единице

Средняя длинна метафосфатной анионной цепи:

$$n_{av} = \frac{2}{\sum_i [M_i] q_i / [P] - 1}$$

Р – молярная концентрация фосфора в стекле,

Σi [M_i] qi - полный заряд, вносимый металлическими катионами, [M_i] – молярная концентрация металла i, q_i - заряд металлического катиона типа i.

[Sales B. C. et al. Structure of zinc polyphosphate glasses // J. Non-Crys. Solids.– 1998.– V226.– Issue 3.– Pages 287-293.]

Международная конференция «Инженерия сцинтилляционных материалов и радиационные технологии», г. Дубна

Диаграмма энергетических уровней иона Eu³⁺ и переходы в фосфатном стекле

Международная конференция «Инженерия сцинтилляционных материалов и радиационные технологии», г. Дубна

Изменение состава матрицы

ИК спектры поглощения стекол состава: X ZnO- $(50-X)Li_2O-50P_2O_5$; 5вес% RE.

Положение пиков коле	бательных переходов в		
спектре поглощения фосфатных стекол			
Структура связей	Положение пика (см ⁻¹)		
P=O	1240-1270		
P-O-	1100		

Электроотицательность Li⁺ - 1, Zn²⁺ - 1,6

Международная конференция «Инженерия сцинтилляционных материалов и радиационные технологии», г. Дубна

Выводы:

кинетика катодолюминесценции в полосах 592 и 614 нм слабо меняется при увеличении концентрации иона европия в стекле до 3 вес.%
при изменении соотношения L₂O/ZnO в матрице стекла время затухания в полосе 614 нм меняется от 1,75 до 1,5 мс, тогда как в полосе 592 нм от 2,1 до 1,55 мс при увеличении содержания ZnO.
наблюдается изменение соотношения электро- и магнитодипольного переходов ⁵D₀→⁷F₂ (614 нм) и ⁵D₀→⁷F₁ (592 нм), увеличение

эффективности перехода ⁵D₀→⁷F₂, что связано с понижением симметрии окружения Eu³⁺ вследствие формирования более неупорядоченной структуры стекла при изменении соотношения L₂O/ZnO.