Жмурин П.Н. ИСМА НАН Украины

Модификация свойств пластмассового сцинтиллятора

>>>

 $w_{\rm da}$ – скорость безызлучательного переноса энергии R_0 – радиус Фёрстера,

Полимерная основа –полистирол, поливинилтолуол активатор – *п-терфенил* (2%) шифтер – РОРОР (0.2%)

Световыход:

- 8000 фот/Мэв (полистирол)
- 10000фот/Мэв (поливинилтолуол)

Световыход пластмассового сцинтиллятора (J. B. Birks)

- » Относительно малый световыход
- » Значительное уменьшение световыхода с увеличением массы падающих частиц.
- » Невозможность выделить сигнал, создаваемый протонами отдачи, в присутствие гамма фона
- » Нечувствительность к тепловым нейтронам

Видно, что основной канал потери энергии в треках созданных тяжелыми частицами связан с перераспределением энергии возбуждения между уровнями синглетных и триплетных состояний хромофорных групп полимерной основы, и невозможности их «съема» с помощью традиционно используемых активаторов.

$\rangle\rangle\rangle$

Модификация свойств пластмассового сцинтиллятора на основе непосредственной регистрации энергии триплетного состояния.

скорость переноса $\Box \left| \left\langle \Psi(donor \ mol) \right| H_{int} \left| (akceptor \ mol) \right\rangle \right|^2$

 $|\Psi(молекулы активатора)\rangle = |R(orbit motion)\rangle|S(spin)\rangle$ $|\Psi(молекулы мет.орг.комплекса)\rangle = a |R(orbit motion)\rangle|S(singlet)\rangle$ $+b|R(orbit motion)\rangle|S(triplet)\rangle$ Eu³⁺ metal-organic complexes

Для проверки возможности безызлучательного съема энергии возбуждения триплетных состояний полимерной матрицы был синтезирован целый ряд металлорганических комплексов европия, с различным лигандным окружением. Для всех комплексов в качестве нейтрального лиганда использовался bipyridine.

Люминесцентные свойства металлорганических комплексов

Все комплексы имеют характерный спектр люминесценции с максимумов на 612 нм и временем жизни около 800мкс Отсутствует какое либо перекрытие спектров возбуждения со спектрами люминесценции полимерной основы. Значит не существует канала безызлучательного переноса энергии с полимерной основы на металлоорганический комплекс

Спектры возбуждения и люминесценции Eu3+ комплексов

Образцы сцинтилляторов, активированных металлорганическими комплексами

Для проведения измерений сцинтилляционной эффективности были синтезированы пленочные и объемные образцы с различным уровнем концентрации металлорганическим комплексом европия

Измерение сцинтилляционной эффективности

Комплекс	Отн. Световы ход, %
Eu(DBzM)	100
Eu(BzA) ₃ Phen	91
Eu(BPA) ₃ Phen	85
Eu(AA)3Phen	2

Измерения проводились с использованием α-частиц с энергией 5.4 МэВ, (Pu-239 альфа источник).

Наибольший световыход соответствует Eu(DBzM)₃Phen комплексу

Сцинтилляционная эффективность Eu(DBzM)₃Phen комплекса

При концентрации 4% Eu(DBzM)₃Phen комплеса, сцинтилляционная эффективностьь достигает образцов значительно превышает уровень световыхода стандартного пластмассового сцинтиллятора при облучении альфа частицами и приближается уровню световыхода достигаемого ПС при облучении электронами. Можно говорить о том, что метал органические комплексы действительно могут непосредственно чувствовать триплетные возбужденные состояния полимерной матрицы. Таким образом, если в одной и той же полимерной системе реализовать два центра, способных собирать энергию возбуждения синглетной и триплетной компоненты отдельно, можно получить сцинтиллятор способный различать плотность частицы по плотности трека, который они создают в полимерной матрице.

Способность к n/y разделению

Номер	Содержание добавок в ПС*, мас.%		<u>n/γ-</u>	Максимум	
образца	Триплетный	Синглетный	Сместитель	разделение,	люминесц.
ПС	активатор	активатор	спектра	FOM	ПС, нм
1	2,5% Eu[DBM]3Phen	0,7% DMDPA	0,03% L59	1,35	598 и 612
2	3,0% Eu[DBM]3Phen	1,0% DMDPA	0,05% L59	1,48	598 и 612
3	3,5% Eu[DBM]3Phen	1,5% DMDPA	0,04% L59	1,36	598 и 612
4	2,0% Eu[DBM]3Phen	1,0% DMDPA	0,03% L59	1,03	598 и 612
5	4,0% Eu[DBM]3Phen	1,0% DMDPA	0,03% L59	1,2	598 и 612
6	3,0% Eu[DBM]3Phen	2,0% DMDPA	0,03% L59	1,23	598 и 612
7	3,0% Eu[DBM]3Phen	0,5% DMDPA	0,03% L59	1,21	598 и 612

n/γ разделение двуцентровых сцинтилляционных композиций

посредством триплет-триплетной аннигиляции

1.74

1.59

ая цен Второй путь регистрации триплетного возбуждения связан с проявлением эффекта задержанной люминесцен

ции

Stilbene

3.33

Пластмассовый сцинтиллятор.

- » Основная причина невозможности регистрации задержанной люминесценции – время жизни возбужденных триплетных состояний хромофорных групп (бензольного кольца) не превышает 30нс, что сопоставимо с временем жизни возбужденных синглетных состояний
- » Возможность реализации задержанной люминесценции (триплет – триплетная аннигиляция) в полимерной матрице отсутствует.
- » Нужно создавать полимерные системы с хромофорными группами, у которых времена жизни значительно превышают времена жизни синглетных состояний
- » Концентрация хромофоров в полимере должна быть достигать возможности локальной их группировки, что должно создавать возможность локализации возбуждения на двух соседних хромофорах.

Пластмассовые сцинтилляторы с реализацией эффекта триплет-триплетной аннигиляции

Полистирол 4 РРО

Plastic scintillators UPS-110NG. D30x10 mm. Neutrons & gamma from Pu-239. FOM = 2.41

Основной недостаток – малая микротвердость (HV=24 МПа) и быстрая временная деградация матрицы.

Пластмассовые сцинтилляторы на основе активатора с затрудненной диффузией UPN 111 ng Pastic scintillators UPS-111NG. D16x10 mm. Neutrons & gamma from Pu-239. FOM = 1.61

Долговременная стабильность и твердость сравнимая со стандартом

Plastic scintillators UPS-111NG. D16x10 mm. Neutrons & gamma from Pu-239. FOM = 1.61

Пластмассовые сцинтилляторы на основе сополимеров UPN 112 ng

Plastic Scintillator	Light Yield, %	n/γ –discrimination	Микротвердость
	(rel. anthracene)	FOM	по Виккерсу,
			HV, MPa
UPS-110NG	52	2.41	24
UPS-111NG	54	1.61	178
UPS-112NG	51	1.61	120
UPS-923A	57	-	231
BC408	65	-	182

Регистрация медленных нейтронов

Диспергация нейтронно чувствительных элементов таких как ⁶Li, ¹⁰B, ¹¹³Cd, ¹⁵⁷Gd в полимерной основе на уровнях необходимых для эффективного поглощения нейтронов (единицы весовых процентов) без потери ее прозрачности и сцинтилляционной эффективности.

Обогащение полимерных основ ионами Gd

Лигандное окружение ионов гадолиния должно способствовать :

- Растворимости их в полимерной среде ПС

- Не иметь полос поглощения в области переноса энергии возбуждения от полимерной основы к активаторам ПС (область 280- 390 нм)

 Способствовать устойчивости к условиям полимеризации полимерной основы ПС Пластмассовые сцинтилляторы содержащие гадолиний, описанные в литературе

Комплекс	Полиме рная основа	Macc% по Gd	Световыход ПС относительно ПС без Gd, %
Gd (O=	NE120	0,1	42
<u>\</u> o⟨/3		0,2	15
$Gd(NO_{3})_{3} 3 \qquad \begin{array}{c} H_{3}C & CH_{3} \\ O = P & CH_{3} \\ H_{3}C & CH_{3} \\ H_{3}C & CH_{3} \end{array}$	ΠΜΜΑ	3,0	51
$Gd(NO_3)_3$ $O=R-O$	ПC,	0,25	72
•	ПВТ	1,9	41

Синтез карбоксилатов Gd с нейтральными лигандами

Для избежания процессов гидролиза и полимеризации гидроксикомплексов карбоксилата Gd, в него необходимо вводить такие нетральные лиганды, которые бы вытесняли молекулы воды и насыщали координационную сферу гадолиния

ТРРО (трифенилфосфиноксид)

NL-нейтральный лиганд, способный вытеснять молекулы воды

 $\begin{array}{l} Gd(OOC(CH_2)n-C_6H_5)_3 \bullet 2H_2O + 2NL \rightarrow Gd(OOC(CH_2)n-C_6H_5)_3 \ 2NL + 2H_2O \\ n=3,4; \\ \text{NL-TBP, TPP, TPPO.} \end{array}$

Растворимость в стироле фенилпропионата и фенилпентаната гадолиния с различными нейтральными лигандами

Комплекс	Растворимость, масс%		
	по комплексу	по Gd, масс %	
Gd(OOC(CH ₂) ₃ C ₆ H ₅) ₃ ·2TPP	8,4	1,01	
Gd(OOC(CH ₂) ₃ C ₆ H ₅) ₃ ·2TBP	25,0	2,8	
Gd(OOC(CH ₂) ₃ C ₆ H ₅) ₃ ·2TPPO	42,7	4,93	
Gd(OOC(CH ₂) ₄ C ₆ H ₅) ₃ ·2TPPO	50,0	5,16	

Растворимые комплексы иона гадолиния

Наиболее подходящими соединениями являются комплексы иона гадолиния фенил карбоновых кислот с различной длиной алкильной цепи

комплекс	Растворимость по Gd ,%	Сцинт. эфф., %
n=1 фенилуксусная	0.02	80
n=2 гидрокоречневая	0.1	85
n=3 фенилбутановая	1	96
n=4 фенилвалериановая	1	98

Результаты измерений относительного световыхода $\eta(C)$ образцов ПС с Gd(PhV)₃·2TPPO и Gd(NO₃)₃(TBP)₃

Зависимость относительного световыхода $\eta(C)$ от содержания Gd в ПС с соединением Gd, который имеет лучший световыход, описанный в литературе:

1 - Gd(PhV)₃·2TPPO; 2 - Gd(NO₃)₃(TBP)₃

ПС, 0,5 % по Gd

ПС, 3% по Gd

- » Таким образом, показана принципиальная возможность изменения свойств пластмассового сцинтиллятора в широком диапазоне.
- » Основной вопрос в возможности технологической реализации.